EMPIRE XPU Tutorial

Patch Antenna design

Overview: Topics

- Template wizard •
- Simulation •
- Nearfield •
- Farfield •
- Array Creation with Template ٠
- Simulation ٠
- Phased array investigations ٠
 - Scan angle •
 - Coupling •
 - Active impedance ٠

Step 1: Template Wizard

- Start Empire XPU
- Select Templates
- Open Antennas → Microstrip antenna
- Set the "Resonance Frequency" to 2.45 GHz
- Keep "Sweep Parameter: Width"
- Click "OK"
- Select File → Save As, optionally create new folder and name

Comments:

Using the template "Microstrip antenna…" • Automatic generation of patch dimensions, substrate, lumped port, near and far field definitions

Automatic generation of mesh

Step 2: Structure Check

- 3D Results Tab: Geometry verification
- Groups: Objects and properties
- Simulation Setup: Settings -
- Open Variables
- Open "width"
- Move slider
- Set Step to "100"

(Stop-Start)/Step= 200 possibilities

Step 3: Optimization

Step 4: Results

- Switch to 2D Results tab → right click in List, click "Show all"
- Right click on Plot, select "Configure Plot"
- Set Range "2.3" "2.5" GHz, OK –
- Select curve with peak nearest to 2.45 GHz and note Opt Number (here 0008)

E Plot Configuration

General / Axis	Legend
X-Axis	
Label:	
> Range:	2.3 🔻 - 2.5 💌 GHz 💌
Log. x-axis	

Step 5: Near Field Display

Step 6: Far field Display

Part 2: Array Creation

- Template wizard
- Simulation
- Postprocessing
- Nearfield
- Farfield
- Phased array investigations
 - Scan angle
 - Coupling
 - Active impedance

Step 7: Template Wizard

EMPIRE XPU

- Start Empire XPU
- Select Templates → Antennas → Patch Array
- Drawing unit: "mm"
- Stop Frequency: 5 GHz
- Target Frequency: 2.45 GHz
- Substrate Material: epsr=2.2
- Resonance Frequency: 2.45 GHz
- Substrate Height: 1.524 mm
- Number of elements in x: 6
- Beam Angle Theta: 35
- Click "OK"
- Open Variables
- Right click on length Edit
- Set Type:Constant, Value:38.8

	📕 Edit Variabl	le "length"	?	×	
	Comment:				
	Type:	Constant			
38.8	Value:	38.8			
1000					M N
				and the second s	S

Step 8: Simulation Results

Switch to '3D Results' tab

- Select File \rightarrow Save As, create new folder
- Click "Start Simulation", OK
- In Plot Tab switch to 'Voltages'

Comment:

- The S-parameter results are not valid if multiple ports with the same number are used

Step 9: Patch Array - Coupling

- Save EMPIRE project to a new file named 'coupling'
- Create individual port numbers for all patches like in the picture below

- Switch on group "port"
- Click Port Setup Wizard
- Table Style: Array View
- Click on Calculator and enter "ix+iy*10+1"
- Click OK

General	,		View	↑ ^Z υ ↑ ^Y υ	↑ ^z _	Display	· 🖊 🔊	Create	
	•	ຸ່ເ		$ \vdash^{\wedge} \vdash^{\wedge} $		<u>छ अ</u>	<u>3D</u> ~		
	£	Port Ed	ditor						
	->	Table St	tyle: Array V	View 🔻 Para	meter: Ni	umber	▼ Calculate	or	
			140.89	202.11	263.34	324.56	385.79	447.01	
		291.84				4	5		
		230.61	11	12	13	14	15	16	
		169.39	21	22	23	24	25	26	
		108.16	31	32	33	34	35	36	
				된 Port Ca	lculator	?	×		
							_		
				Equation	: ix + 10*	iy+1	•		
				X	X position	in units	ue		
				nx	Number o	arting at 0 f columns 6			
				dx y	X Size in u Y position	inits 306 in units	.12		
				iy ny	y index sta Number o	arting at 0 f rows 4			
				dy	Y Size in u	inits 183	.68		
				ОК	С	ancel	Apply		

EMPIRE XPU

Step 10: Simulation

- Switch to 'Simulation' tab -
- Select "Simulation" on
 the left
- Click "Preprocessing"
- Select only some folders for simulation (e.g. sub-1, sub-12)
- Click "Start Complete
 Simulation"
- After completion change
 to 2D Results Tab

Step 11: Simulation Results

Empire XPU 8.0 - C:\Users\andreas.wien\Desktop\Tut-home\03 Patch Array\sim\coupling.er 3D Results Circui Right click in list Select "Show all" Click "Update" -20 Click "Autoscale" Parameters (dB) -40Scattering -60 -100 1.5 2.0 3.0 3.5 1.0 2.5 Frequency (GHz)

Comment: The s-parameter results show the coupling between the different patches and the individual matching if only one port is excited at a time

Step 12: Active Impedance

- Save EMPIRE project to ٠ a new file named 'active'
- Click "Simulation Setup" -٠
- Change "Simulation ٠ Mode" to **"Simultaneous Excitation** (Active Impedance)"
- Click "Start Simulation"
- OK

<u>F</u> ile <u>E</u> dit View Selection <u>U</u> tilities <u>H</u> e	lp				
2D Design 3D Des	ign	Simulation	Circuit	2D Re	sults
Project Setup	General	View		Display	
∎ ♥ ₽→\$ \$ \$	¢ 👘	ົງີເ∳ີ	$\downarrow^{\mathbf{Y}} \stackrel{\uparrow^{\mathbf{Z}}}{\longrightarrow} \stackrel{\mathbf{X}}{\longrightarrow} \stackrel{\uparrow^{\mathbf{Y}}}{\longrightarrow} \stackrel{\mathbf{X}}{\longrightarrow} \stackrel{\uparrow^{\mathbf{Z}}}{\longrightarrow}$	- G 🔍	₹_ / 3D
T 🖸 🖓 🔲 🕂 🗶 📳 Groups	E Simulation	Setup			
(conductor)	General E	EM Setup Thermal	Mesh Boundary		
(dielectric)	General				
port (active)	Drawing U	nit 1		mm 💌	
 Coordinate Systems Mesh Info (Cells: 667.6k) 	Solvers	EM			
▼ Field Monitors	Structure	Type Standard			
FIELDMON 2 (Complete EM Field)	d Backgroun	d Material Air			
▶ Variables	Simulation	Mode Simultane	eous Excitation (Active In	npedance) 🔻	

Step 13: Simulation Results

- 3D Results Circuit M 2D Results tab R(sub-1\Z1.in) J(sub-1\Z1.in) R(sub-1\Z2.in) S-Parameters: --- 3(sub-1\Z2.in) 250 Mark s11, s22, s33 Right click "Show 200 Scattering Parameters (dB) only" g 150 Impedance Click "Add Result" 100 Impedance: 50 Mark Z1.in, Z2.in -10 **Right click "Show** -12 dB(sub-1\s1_1) only" --- dB(sub-1\s4 4) dB(sub-1\s2_2) dB(sub-1\s3 3) Autoscale -50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 Frequency (GHz) Frequency (GHz) howing 4 of 24 curves
- Optionally "Toggle View Mode", Tile Sub Windows

Comment: The s-parameter results show the individual matching if all ports are excited at a time. The active input impedance at all ports can be investigated

